Appendix B

Compliance Guidelines for Cooling Heat-Treated Meat and Poultry Products (Stabilization)

Introduction

Establishments producing ready-to-eat roast beef, cooked beef and corned beef products, fully cooked, partially cooked, and char-marked meat patties, and certain partially cooked and ready-to-eat poultry products are required by FSIS to meet the stabilization performance standards for preventing the growth of spore-forming bacteria (9 CFR §§ 318.17(a)(2), 318.23(d)(1), and 381.150(a)(2), respectively). Further, FSIS requires meat and poultry establishments, if they are not operating under a HACCP plan, to demonstrate how their processes meet these stabilization performance standards within a written process schedule validated for efficacy by a process authority (§§ 318.17(b) and (c); 318.23(d)(2) and (3); and 381.150(c) and (d)).

To assist establishments in meeting the stabilization requirements, FSIS is issuing these compliance guidelines, which are based upon FSIS Directives and the product cooling requirements contained in previous regulations. Establishments may choose to employ these guidelines as their process schedules. FSIS considers these guidelines, if followed precisely, to be validated process schedules, since they contain processing methods already accepted by the Agency as effective.

Also within these guidelines, FSIS has provided discussion regarding disposition of product following cooling deviations and advice for the development of customized procedures for meeting the stabilization performance standards.

Stabilization Guidelines

It is very important that cooling be continuous through the given time/temperature control points. Excessive dwell time in the range of 130°F to 80°F is especially hazardous, as this is the range of most rapid growth for the clostridia. Therefore cooling between these temperature control points should be as rapid as possible.

1. During cooling, the product's maximum internal temperature should not remain between 130°F and 80°F for more than 1.5 hours nor between 80°F and 40°F for more than 5 hours. This cooling rate can be applied universally to cooked products (e.g., partially cooked or fully cooked, intact or non-intact, meat or poultry) and is preferable to (2) below.

2. Over the past several years, FSIS has allowed product to be cooled according to the following procedures, which are based upon older, less precise data: chilling should begin within 90 minutes after the cooking cycle is completed. All product should be chilled from 120°F (48°C) to 55°F (12.7°C) in no more than 6 hours. Chilling should then continue until the product reaches 40°F (4.4°C); the product should not be shipped until it reaches 40°F (4.4°C).

This second cooling guideline is taken from the former ("Requirements for the production of cooked beef, roast beef, and cooked corned beef", 9 CFR 318.17(h)(10)). It yields a significantly smaller margin of safety than the first cooling guideline above, especially if the product cooled is non-intact product. If an
establishment uses this older cooling guideline, it should ensure that cooling is as rapid as possible, especially between 120 °F and 80 °F, and monitor the cooling closely to prevent deviation. If product remains between 120 °F and 80 °F more than one hour, compliance with the performance standard is less certain.

3. The following process may be used for the slow cooling of ready-to-eat meat and poultry cured with nitrite. Products cured with a minimum of 100 ppm ingoing sodium nitrite may be cooled so that the maximum internal temperature is reduced from 130 to 80 °F in 5 hours and from 80 to 45 °F in 10 hours (15 hours total cooling time).

This cooling process provides a narrow margin of safety. If a cooling deviation occurs, an establishment should assume that their process has exceeded the performance standard for controlling the growth of *Clostridium perfringens* and take corrective action. The presence of the nitrite, however, should ensure compliance with the performance standard for *Clostridium botulinum*.

Establishments that incorporate a "pasteurization" treatment after lethality and stabilization treatments (e.g., applying heat to the surface of a cooled ready-to-eat product after slicing) and then re-stabilize (cool) the product should assess the cumulative growth of *C. perfringens* in their HACCP plans. That is, the entire process should allow no more than 1-log_{10} total growth of *C. perfringens* in the finished product. When employing a post-processing "pasteurization," establishments may want to keep in mind that at temperatures of 130 °F or greater, *C. perfringens* will not grow.

Support documentation for this process was filed by the National Food Processors Association on April 14, 1999. It is available for review in the FSIS Docket Room, Room 102, Cotton Annex, 300 12th St., SW, Washington, DC 20250-3700.

Discussion

Cooling Deviations

In spite of the best efforts of an establishment to maintain process control, cooling deviations will occasionally occur. Power failures or breakdowns of refrigeration equipment cause situations that cannot always be anticipated. However, it is important that the establishment plan how to cope with such eventualities before they occur.

The recommended time/temperature combinations in these guidelines incorporate a small safety margin. Therefore, an occasional small lapse in and of itself may not cause a problem in every instance. If the cause of a small cooling deviation is not traced and corrected when first noticed, however, the problem will likely recur and possibly become more frequent and more severe. The processor should consider an occasional small deviation an opportunity to find and correct a control problem. Of course, a large deviation or continual small ones will always constitute unacceptable risk.

After it is determined that a cooling deviation has occurred, the processor should:

1. Notify the inspector, the QC unit, and other concerned units, such as refrigeration maintenance and production.

2. Hold the involved product and determine the potential adulteration by bacteria, particularly clostridial pathogens. If adulteration is confirmed or appears to be likely, inform the inspector.

3. Postpone further product manufacturing using that chill facility until the processor has:
 a. determined the cause of the deviation;
 b. completed adjustments to assure that the deviation will not recur; and
c. informed the inspector and the production units of the determinations and adjustments and make any needed amendments in the written processing procedures.

Computer modeling and sampling

In the event that a cooling deviation does occur, the product may often be salvaged if the results of computer modeling and/or sampling can ensure product safety. Because of a lack of information concerning the distribution of \(C.\ perfringens \) in product, sampling may not be the best recourse for determining the disposition of product following cooling deviations. However, computer modeling can be a useful tool in assessing the severity of a cooling deviation. While computer modeling cannot provide an exact determination of the possible amount clostridial growth, it can provide a useful estimate.

A technical document (available from the FSIS Docket Room) provides description of the calculations that are used to estimate relative growth.

With careful continuous monitoring of the heating and cooling time/temperature profile of each lot, there will always be many available data points, enhancing the accuracy of computer modeling. Conversely, when there are few documented time/temperature data points, the accuracy of the modeling decreases markedly. If time/temperature monitoring has not been conducted through the end point internal product temperatures of 40° F or less, sampling is not an option and the product should be destroyed.

Options after computer determination of cooling deviation severity.

If computer modeling suggests that the cooling deviation would likely result in more than one log increase in \(C.\ perfringens \), without any multiplication (remains in lag phase) of \(C.\ botulinum \), then the establishment can choose to recook or sample the product.

Recook only when:

- All product was either immediately refrigerated after the deviation or can be immediately recooked after the deviation; and
- The recooking procedure can achieve a final internal product temperature of at least 149°F (65°C) for two minutes. Subsequent to recooking, the product must be cooled in strict conformance to existing guidelines. When the product is to be reworked with another raw product, the recooking procedure for the combined product must achieve a minimum internal temperature of 149°F, to address the cooling deviation, and further to an increased time/temperature if necessary to be in accord with any other requirement relative to microbiological safety for the intended final product. Subsequent to recooking, the product must be cooled in strict conformance to existing guidelines.

Custom Stabilization Processes

While compliance with the guidelines above will yield product that meets the cooling performance standards, some establishments may want to develop customized stabilization procedures. Because customized process schedules must be validated by process authorities for efficacy, most establishments will probably rely upon processing authorities to develop such procedures, demonstrate their efficacy, and attest to their safety. Process authorities may obtain information from the literature, or likely compare peer reviewed methods in determining safe procedures that meet the performance standards.

Probably one of the most definitive tools at the disposal of the processing authority is the inoculated pack study. Such studies should, of course, be conducted only in the laboratory, not in the plant. Further, such studies should be undertaken by individuals who have a thorough knowledge of laboratory methods used in clostridial research. \(C.\ perfringens \) can be used alone in an inoculated pack study to demonstrate that the cooling performance standard is met for both microorganisms, \(C.\ perfringens \), and \(C.\ botulinum \). This is because conditions of time/temperature that would limit the growth of \(C.\ perfringens \) to one log or less would also prevent multiplication of \(C.\ botulinum \), which is much slower. A cocktail of various strains of \(C.\ perfringens \) can be used alone in an inoculated pack study to demonstrate that the cooling performance standard is met for both microorganisms, \(C.\ perfringens \), and \(C.\ botulinum \). This is because conditions of time/temperature that would limit the growth of \(C.\ perfringens \) to one log or less would also prevent multiplication of \(C.\ botulinum \), which is much slower. A cocktail of various strains of \(C.\ perfringens \) can be used alone in an inoculated pack study to demonstrate that the cooling performance standard is met for both microorganisms, \(C.\ perfringens \), and \(C.\ botulinum \).
Clostridium perfringens spores is often used for this purpose. Relatively "fast" toxigenic strains should be used to develop a worst case. However, the strains selected should be among those that have been historically implicated in an appreciable number of outbreaks, especially in products similar to those being prepared in the establishment.

For Further Information:
FSIS Technical Service Center
106 South 15th Street
Suite 904
Omaha, NE 68102
PHONE: (402) 221-7400
FAX: (402) 221-7438
E-mail: tech.center@usda.gov